classic | mobile
 

Search...

 

Autonomous, self-regulating systems with collective behaviour
4th Quarter 2016, This Week's Editor's Pick, Robotics & Mechatronics


The latest innovation emerging from Festo’s Bionic Learning Network (BLN) is the AirPenguin. The BLN examines naturally occurring phenomena and develops innovative, cutting-edge bionic technology which Festo then integrates into its products.

The AirPenguin is an autonomously flying object that comes close to its natural archetype in terms of agility and manoeuvrability. It comprises a helium-filled ballonet, which has a capacity of about 1 cubic metre and thus generates 1 kg of buoyant force; at each end of the ballonet is a pyramid-shaped flexible structure of four carbon fibre rods, which are connected at joints by a series of rings spaced about 10 cm apart. The rings together with the carbon fibre rods yield a 3D Fin Ray structure that can be freely moved in any spatial direction. The Fin Ray structure was derived from the anatomy of a fish’s fin and extended here for the first time to applications in three-dimensional space.

Each pair of spatially opposed carbon fibre rods is connected via bowden wires and a double pulley, and can be extended and retracted in contrary motion by means of an actuator. This gives rise to rotation free of play both at the tip of the AirPenguin’s nose and at the end of its tail. By superimposing two perpendicular planes of rotation, any desired spatial orientation can be realised.

A strut to which the two wings are attached passes through the helium-filled ballonet. This new type of wing design can produce either forward or reverse thrust. Each wing is controlled by two actuators: a flapping actuator for the up-and-down movement of the wings, and a further unit that displaces the wing strut to alter the pressure point of the wings. There is also a central rotational actuator for the two flapping wings that directs their thrust upwards or downwards, thus making the AirPenguins rise or descend. All three actuators are proportionally controlled. This makes for continuously variable control of the flapping frequency, forward and reverse motion, and ascent and descent.

The entire wing complex comprises a strut with flat flexible wings of extruded polyurethane foam. The wing strut, which is supported at the pivot point of the torso, can be moved either towards the front or rear edge of the wing. Displacing the strut towards the front, for example, causes the wing’s pressure point to migrate forwards. The pressure of the airstream bends the cross-section of the wing in such a way as to produce a profile that generates forward thrust. If the wing strut is moved towards the rear edge of the wing, the pressure point is likewise moved to the rear, and the AirPenguin flies backwards. With this design a self-regulating, wing pressure-controlled, passively twisting adaptive wing has been realised for the first time.

Autonomous, self-regulating systems with collective behaviour

The AirPenguins are also equipped with complex navigation and communication facilities that allow them to explore their ‘sea of air’ on their own initiative, either autonomously or in accordance with fixed rules.

In the underlying project, a group of three autonomously flying Penguins hovers freely through a defined air space that is monitored by invisible ultrasound transmitting stations. The Penguins can move freely within this space; a microcontroller gives them free will in order to explore it. The microcontroller also controls a total of nine digital actuators for the wings and for the head and tail sections. By means of XBee, based on ZigBee, large volumes of data can be transmitted between the Penguins and the transmitting stations by 2,4-GHz band radio. The Penguins recognise each other on the basis of their distances to the transmitting stations. The rapid, precise control allows the AirPenguins to fly in a group without colliding, while also mastering height control and positional stability. As an alternative, they can act synchronously as a group.

A comprehensive central surveillance system provides security in case of sensor failure and reports low energy supply. Whenever necessary, it prompts the Penguins to return to the charging station.

Technology-bearers for the automation technology of tomorrow

Autonomous, versatile, adaptive self-regulating processes will acquire increasing significance in future for automation in production. The animal kingdom can provide insights here which, when implemented by resourceful engineers, lead to astounding new applications.

The ongoing development of sensor and control technology is thus also being promoted along the road to decentralised, autonomously self-controlling and self-organising systems thanks to inspiration from nature. The transfer to automation technology is also to be found by analogy in regulating technology from Festo, for example in the new VPPM and VPWP proportional-pressure regulators for servo-pneumatics.

For more information contact Kershia Beharie, Festo, +27 (0)11 971 5509, kershia.beharie@festo.com www.festo.co.za


Credit(s)
Supplied By: Festo
Tel: 08600 FESTO (33786)
Fax: 08794 FESTO (33786)
Email: sales.za@festo.com
www: www.festo.co.za
Share via email     Print this page  

Further reading:

  • Music festival is a flying success
    1st Quarter 2019, SEW-Eurodrive, This Week's Editor's Pick, Electrical switching & drive systems & components
    One of the most spectacular stunts ever achieved at a live music event in South Africa involved flying a replica helicopter across the stage at the Afrikaans is Groot festival at the Sun Arena in Menlyn, Pretoria, which was achieved using state-of-the-art automation and mechatronics technology from SEW-Eurodrive.
  • A bionic flying fox
    1st Quarter 2019, Festo, This Week's Editor's Pick, Robotics & Mechatronics
    Festo has for years been developing research platforms where the basic technical principles are derived from nature.
  • New Scara robot family
    1st Quarter 2019, Omron Electronics, Robotics & Mechatronics
    Omron is introducing a new line of Scara robots, boasting a sleek design and enhanced performance.
  • Football pitch in three pieces
    1st Quarter 2019, This Week's Editor's Pick, Electrical switching & drive systems & components
    Sheffield-based engineering firm, SCX, helped to deliver the retractable pitch.
  • Support for new space telescope
    1st Quarter 2019, Tectra Automation, This Week's Editor's Pick, Pneumatic systems & components
    Tectra Automation designed and supplied a purpose-built assembly tower to integrate and align the telescope lenses for a new space telescope, using the Bosch Rexroth range of heavy duty modular aluminium profiles and accessories.
  • The first Mars helicopter will fly with maxon motors
    1st Quarter 2019, DNH Tradeserve, This Week's Editor's Pick, Electrical switching & drive systems & components
    The Mars helicopter technology will lay the way for many future scientific and exploratory missions to Mars.
  • Retrofit of sheet metal warehouse
    1st Quarter 2019, Beckhoff Automation, This Week's Editor's Pick, Electrical switching & drive systems & components
    The modernisation project was handled by Peter Huber, a full service provider of control solutions for sheet metalworking, and a Beckhoff solution provider since 2010.
  • Festo celebrates 45 years in South Africa
    4th Quarter 2018, Festo, News & events
    In celebration of 45 years of successful growth and development in this country, managing director of Festo South Africa, Brett Wallace paints a picture of the company’s rich history, global heritage and ongoing pursuit of new improved automation solutions for Africa.
  • Taking hydraulics to a new level
    4th Quarter 2018, Parker Hannifin - Sales Company South Africa, This Week's Editor's Pick, Other technologies
    The recent introduction of versatile digital ecosystems connecting electronic control hardware and software to the cloud will be a game changer for mobile hydraulic machinery and equipment manufacturers.
  • Fashion and data combine to create iconic African designs
    4th Quarter 2018, Siemens Digital Factory & Process Ind. & Drives, This Week's Editor's Pick, Other technologies
    Technology leader Siemens used data from the cities of Lagos, Nairobi and Johannesburg and wove it into unique fabrics which tell a story about each city.
  • A revolutionary new heavy duty engine platform
    4th Quarter 2018, This Week's Editor's Pick, Electrical switching & drive systems & components
    Cummins ISG is a revolutionary global heavy duty engine platform developed using a combination of patented technologies and advanced production techniques.
  • Blockbuster effects, automated for any theatrical production
    4th Quarter 2018, Beckhoff Automation, This Week's Editor's Pick, Electrical switching & drive systems & components
    Controlling all the complex moving parts in a large-scale theatrical production requires a robust control system in the background, and Hudson uses Beckhoff’s PC-based control technology.

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    classic | mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.