Editor's Choice


The current state of GaN use for RF technology

26 February 2021 Editor's Choice Telecoms, Datacoms, Wireless, IoT

Gallium nitride (GaN) based semiconductors have been commercially available for several years at this point. GaN technology has made extensive inroads into many power electronics applications, and increasingly in RF/microwave/millimetre-wave applications.

GaN, as a semiconductor, has high electron mobility, high band-gap voltage, is very rugged, and can be realised in a variety of technologies using layering and epitaxial growth (semiconductor on insulator technology). This includes GaN on silicon carbide (GaN-on-SiC), GaN on silicon (GaN-on-Si), GaN-on-GaN, and even GaN on diamond. The various insulative substrates exhibit a range of performance, reliability, power density, price, and other manufacturing/design concerns. This allows for GaN technology to meet the needs for a vast range of applications.

The most common applications for GaN to date in the RF industry have been for power amplifiers (PA). However, several companies have also developed GaN low-noise amplifiers, mixers, diodes, switches, resistors, and other RF components.

The prevailing theme is that GaN devices tend to be designed for high-frequency and high-power use cases. This is a result of GaN’s cost being a premium over other high-frequency semiconductor technologies, such as Si and gallium arsenide (GaAs), but with far better high-power performance. For instance, in some high-frequency, wide-bandwidth, and high-power applications beyond 6 GHz, several GaAs or Si PAs would be needed to reach the performance of a single GaN PA that may also be more reliable and efficient. In other cases, GaN has also replaced GaAs and indium phosphide (InP) devices in high-frequency and wideband applications, such as sensing and test and measurement instruments.

These features have also led to GaN devices penetrating markets typically dominated by legacy technologies, such as laterally diffused metal oxide semiconductor (LDMOS) Si PAs and travelling wave tube amplifiers (TWTAs). These applications include high-frequency and high-peak pulsed power use cases, such as radar, radar jammers, and satellite communications in the Ka band (27 GHz to 40 GHz). Due to the versatility of GaN devices, GaN amplifiers are also used in commercial wireless applications, such as the ongoing rollout of 4G/5G sub-6 GHz and 5G millimetre-wave infrastructure.

GaN amplifiers and other devices are made to handle frequencies from near DC to tens of gigahertz. Recent research has also explored GaN devices that operate to over 100 GHz and even terahertz (THz). As most mainstream applications are still below 6 GHz, the largest markets for GaN devices are replacing high-power amplifiers (HPAs) in these frequencies. Defence, aerospace, and satellite communications and sensing applications are also embracing millimetre-wave GaN PAs at a high rate.

Due to this diversity of use cases it is difficult to accurately predict the market growth and penetration of GaN technology, but market research firms generally forecast GaN’s growth at more than 10% compound annual growth rate per year through the 2020s.

Other challenges for predicting the growth and penetration of GaN technology in certain markets also come from the extent of the research and development being invested in GaN. A main area of this research is developing GaN PAs with high power added efficiency (PAE) for modern wireless communications. The new modulation schemes and techniques employed by new 5G and other wireless communication technologies incur additional design constraints for PAs, such as the need for high efficiency, high power, and wide bandwidth.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The ‘magic’ of photovoltaic cells
Editor's Choice
Everyone knows that solar generation converts sunlight to electricity, but what comprises a solar panel, and how do they actually work?

Read more...
Analysis of switch-mode power supply: inductor violations
Altron Arrow Editor's Choice Power Electronics / Power Management
Common switch-mode power supply (SMPS) design errors are discussed, and their appropriate rectification is specified, with details on complications that arise with the power stage design of DC-DC switching regulators.

Read more...
Bridging the gap between MCUs and MPUs
Future Electronics Editor's Choice AI & ML
The Renesas RA8 series microcontrollers feature Arm Helium technology, which boosts the performance of DSP functions and of AI and machine learning algorithms.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Hardware architectural options for artificial intelligence systems
NuVision Electronics Editor's Choice AI & ML
With smart sensors creating data at an ever-increasing rate, it is becoming exponentially more difficult to consume and make sense of the data to extract relevant insight. This is providing the impetus behind the rapidly developing field of artificial intelligence.

Read more...
Demystifying quantum
Editor's Choice
Quantum, often called quantum mechanics, deals with the granular and fuzzy nature of the universe, and the physical behaviour of its smallest particles.

Read more...
SiP supports LTE/NB-IoT and GNSS
RF Design DSP, Micros & Memory
The nRF9151 from Nordic Semiconductor is an integrated System-in-Package that supports LTE-M/NB-IoT, DECT NR+ and GNSS services.

Read more...
Service excellence with attention to detail
Deman Manufacturing Editor's Choice
The vision of industry pioneers Hugo de Bruyn and Charles Hauman led to the birth of Deman Manufacturing, a company that sets new standards for innovation and performance within the industry.

Read more...
Nordic expands nRF91 series
RF Design DSP, Micros & Memory
Nordic Semiconductor has announced the expansion of its nRF91 series cellular IoT devices with the introduction of the nRF9151 System-in-Package (SiP).

Read more...
LEXI-R10 series cellular module
RF Design Telecoms, Datacoms, Wireless, IoT
The LEXI-R10 Series from u-blox are LTE Cat 1 bis modules that support multi-band LTE-FDD, and are designed for size-constrained devices.

Read more...