Editor's Choice


Thousands of robots swarm together

Second Quarter 2020 Editor's Choice Robotics & Mechatronics

Each low-cost, three-legged robot moves around with the help of two motors that vibrate at different frequencies, causing it to move across a surface on its rigid legs.

It communicates with its neighbours, measuring their proximity through infrared transmitters and receivers. After being programmed to form a set shape such as the letter K or a starfish, each one in turn navigates its way to a final position using primitive behaviours – following the edge of a group, tracking a distance from the origin or maintaining a sense of relative location. If a traffic jam forms, nearby robots sense it and cooperate to fix the problem.

“Each robot is identical and is controlled by exactly the same program,” explains Dr Michael Rubenstein from the Harvard University School of Engineering and Applied Sciences. “The only thing they have to go on to make decisions is what their neighbours are doing.” The robots are much simpler than many conventional robots, for example individuals may have trouble moving in a straight line; but at full scale the smart algorithm controlling them overcomes individual limitations and the robots can complete a human-specified task – like assembling into a particular shape.

Infrared control

Although the Kilobots can communicate with their neighbours, they have no sense of a broader environment. Four robots mark out the origin of a coordinate system while the remaining robots receive a 2D image of the shape. The initial set of instructions is beamed to the robots via infrared, after which they work autonomously, requiring no further human intervention. Starting with a random selection, if they are in a position to move they motor slowly around, flashing their infrared lights to broadcast information to other Kilobots nearby. They then assemble into the specified shape.

Inspiration from nature

The self-organising behaviour was inspired by the cooperative activities of insects like army ants. The Harvard team aims to provide a physical model for advancing the understanding of collective behaviour, creating artificial swarms with the capabilities of natural ones. The Kilobot demonstrates how simple machines performing simple behaviours can create complexity in a group and that robots can be programmed to perform useful functions by coordinating interactions among many individuals. “The beauty of biological systems is that they are elegantly simple yet in large numbers accomplish the seemingly impossible. At some level you no longer even see the individuals, you just see the collective as an entity in itself,” says research leader Radhika Nagpal, professor of computer science at the Harvard School of Engineering and Applied Sciences.

Practical testing of advanced algorithms

Although there is a large amount of research on algorithms and control methods for groups of decentralised, cooperating robots, they are generally validated by simulation only. The Kilobot goes well beyond the state-of-the-art in robotics by allowing the practical testing of advanced algorithms on a large scale through the use of cheap materials and simple programming. “Performing complex behaviours with as little hardware as possible to keep costs down encompasses the spirit of Kilobots,” says Rubenstein.

An important milestone

The technology is being heralded as an important milestone in the development of collective artificial intelligence. “Increasingly we’re going to see large numbers of robots working together to solve problems,” adds Nagpal. The researchers believe that robot swarms might one day tunnel through rubble to find survivors, remove contaminants from the environment, assist dwindling bee populations in pollinating crops and self-assemble to form support structures in collapsed buildings. Success in getting so many robots to self-organise could be a significant milestone in the development of nanotechnology and a collective artificial intelligence, according to the researchers. The next stage is to refine the intelligence and develop smaller robots capable of the same tasks, eventually aiming for the nano scale.

For more information visit http://tinyurl.com/k96uqb4




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

maxon drives are heading to the Red Planet
Third Quarter 2020, DNH Tradeserve , Editor's Choice
NASA is sending its fifth rover to Mars. Its main mission is to collect soil samples that will be analysed on Earth at a later time. The rover will also carry a helicopter that will perform the first flights on the Red Planet. maxon’s precision DC and BLDC motors will be used for numerous mission-critical tasks.

Read more...
The new mobility: how sensors control the cobots of the future
Third Quarter 2020, SICK Automation Southern Africa , Editor's Choice
The ongoing development of small, powerful and flexibly positionable robots that can collaborate with humans is progressing in leaps and bounds. Sensors from SICK Automation are an important component. ...

Read more...
Innovative mobile robots
Third Quarter 2020, Omron Electronics , Editor's Choice
Tailor-made mobile robotics revolutionise human-machine collaboration in the automotive industry.

Read more...
From the editor's desk: The future is calling
Third Quarter 2020, Technews Publishing , Editor's Choice
The move to level 2 has brought a feeling of renewal. At last we can start thinking ahead and contemplating the future in this new digital world. SAFPA for one has taken the leap, and has engaged an association ...

Read more...
Milling machines for the aircraft industry
Third Quarter 2020, Beckhoff Automation , Editor's Choice, Electrical switching & drive systems & components
In aircraft construction, exceptional component quality and precision are crucial. However sheet-metal aircraft parts are often very large, making machining and handling problematic. Harmuth CNC-Frästechnik ...

Read more...
The role of hydraulics and pneumatics in smart mining technologies
Third Quarter 2020 , Editor's Choice, Pneumatic systems & components
A Bosch Rexroth South Africa perspective.

Read more...
Rethinking pneumatic technology for the factories of the future
Third Quarter 2020, Parker Hannifin - Sales Company South Africa , Editor's Choice, Pneumatic systems & components
As manufacturing continues its rapid journey to digitalisation, one must ask, what will become of conventional technologies? Take pneumatics for example, which remains based on the age old principle of ...

Read more...
Do all wireless solutions solve real industry problems?
Third Quarter 2020, Festo South Africa , Editor's Choice, Pneumatic systems & components
Wireless technology makes use of devices that allow us to communicate without using cables or wires and it plays a role in solving complex engineering problems. With this platform machines can communicate ...

Read more...
The future of collaborative robots
Third Quarter 2020, Omron Electronics , Editor's Choice, Robotics & Mechatronics
Collaborative robots (cobots) that can work safely in the same environment as people have an important role in enabling flexible manufacturing and creating a competitive advantage for companies. A new ...

Read more...
Moving into 2020 with Festo digitalised products
Second Quarter 2020, Festo South Africa , Editor's Choice
HoloLens, mobile phones, 3D printing and smart glasses – the gadgets that captured the public imagination in the blockbuster movie 'Back to the Future' over 30 years ago have now become a reality, all ...

Read more...