Robotics & Mechatronics


Changing the automotive industry with robots

Fourth Quarter 2020 Robotics & Mechatronics

When it comes to industrial robotics, there’s no doubt that its greatest impact is in the automotive industry. The technology has given manufacturers a competitive advantage – improving the quality of production, increasing output capacity and protecting workers from potential hazards. However, it took decades of refinement for us to reach the point where we are at now.

After World War II, the industrial boom required manufacturers to meet increasing demands. The only way to do this was to create and implement technology that could assist in the delivery of higher and more consistent outputs. Factories experimented with new methods and approaches, but it was the arrival of the first integrated circuit in 1970 that signalled the real possibilities of automation.

“Nowadays, it’s common to find single-arm robots used for repetitive work in automotive factories,” says Riccardo Ferrari, Yaskawa Southern Africa’s system solutions engineer. “They’re generally used for spot welding, glue application, milling and the handling of larger parts such as bonnets, windshields, and bumpers. And you’ll also find them being utilised in the painting of cars, which has been a robotic process for a long time now.”

Yet, the rise of robots in the industry created a myth that machines could do everything in the manufacturing process, eradicating the need for human workers. Ferrari dispels this notion, insisting there’s a strong symbiotic relationship between the machines and humans.

“One of the common misconceptions that everyone has about robots is that they handle the entire manufacturing process – from start to finish – without intervention,” he says. “That’s an inaccurate belief because most industrial robots are fixed to a station. They still require a human to present the parts, via a tub or tray, for the robots to do the work. More importantly, they still require a human to program them and tell them what to do. Simply put: without each other, the process just wouldn’t work.”

Due to its high levels of precision and reliability, a robot is a tool capable of performing certain functions that might be deemed extremely dangerous or next to impossible for a human to execute. From handling heavy spot welding equipment to lugging around hefty and sharp materials, these aren’t exactly tasks that you’d want to give a human worker in the first place. That being said, humans still hold the advantage over robots in several regards.

“Robots lack many cognitive functions, such as the ability to recognise shapes and figures so quickly,” Ferrari explains. “The human eye, as an example, is able to identify an object’s location far quicker than a robot’s 3D vision ever will. It’s about recognising the strengths and weaknesses of both humans and machines, so that we’re able to divide tasks more adequately to achieve better results.”

An area where human insight is still paramount is in the design thinking phase of automation. If the proper consideration and planning aren’t put in place, the whole process could fail.

Ferrari explains how this approach is about more than just identifying the correct robot for the required application. “When you put a robot into a factory, everyone looks at the robot and the task, but very little attention is paid to everything that’s peripheral – and often that’s what makes or breaks a system. You need to consider everything surrounding the robot and application, paying attention to what’s upstream and downstream of it. And more importantly, how it all needs to move together.”

Ferrari uses an example of a welding application in an automotive factory. Not only is the robot vital to the process here, but so is the consistency of the welding wire, the quality of the gas supply, and the position of the parts. Then, there are other peripheral factors such as where the cell is stationed – because a poorly positioned cell could hinder the workflow of the entire factory.

It’s critical thinking that will help move the field of robotics forward, according to Ferrari, and this requires factories to analyse their current processes and applications to see how they can evolve to become smarter and more efficient.

Looking towards the automotive industry’s future with production leaning towards electric cars, robots will still have their place, except instead of handling engine blocks, they will be handling battery packs. It will be through this type of innovative thinking and a hybrid form of human and machine collaboration that the industry will be led into a brighter and more productive future.

For more information contact Brenda Herrero, Yaskawa Southern Africa, +27 11 608 3182, brenda@yaskawa.za.com, www.yaskawa.za.com




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Bag-handling robots
Third Quarter 2021 , Robotics & Mechatronics
With the ever expanding demands of industry, robotics has had to flex and adapt to suit new niches. One such niche is the recent trend towards bag-in-bag packaging, where products supplied in large bags ...

Read more...
Food industry trends: robot-assisted workflows
Third Quarter 2021, Omron Electronics , Robotics & Mechatronics
This has resulted in producers having to be even more agile with existing assets. These assets in the form of single or connected machines must therefore be more flexible than ever, meaning they must ...

Read more...
The benefits of collaborative robots
Second Quarter 2021, SMC Corporation South Africa , Editor's Choice, Robotics & Mechatronics
While robotics led the way for the rapid growth of automation, cobots are the democratisation of robotics technology. They eliminate the cost and complex programming that robots usually require while providing much greater flexibility.

Read more...
Robots in the workforce
Second Quarter 2021 , Robotics & Mechatronics
No, the machines aren’t taking over.

Read more...
Streamlined food deliveries
First Quarter 2021, Omron Electronics , Robotics & Mechatronics
It’s part of a larger experiment called the Six City Strategy ‘New solutions in city logistics’ project, which is looking at possible options for last mile deliveries in Finnish cities. It’s looking for ...

Read more...
The challenges and opportunities in robotics
First Quarter 2021 , Robotics & Mechatronics
With the high levels of unemployment in South Africa, it is essential to identify where there are skills shortages and to encourage learners to study in those fields that present employment opportunities. ...

Read more...
Selecting a mobile robot for heavy loads
First Quarter 2021, Omron Electronics , Robotics & Mechatronics
Five questions to ask when selecting autonomous material transport technology for industrial applications.

Read more...
The role of pick and place robots
Fourth Quarter 2020 , Robotics & Mechatronics
As automation became widely accepted and implemented throughout various industries, robotics took it one step further with robots designed for specific applications, such as handling, packaging and ...

Read more...
Mobile robot with 1500 kg payload capacity
Fourth Quarter 2020, Omron Electronics , Robotics & Mechatronics
The 1500 kg payload capacity enables transportation of large automotive components such as car chassis and voluminous pallet size payloads − items that would have traditionally been moved using forklifts. ...

Read more...
Reducing business downtime with robots
Third Quarter 2020 , Robotics & Mechatronics
In a world that is always connected and moving at a blistering speed, businesses cannot afford to have extensive periods of downtime. As efficiency becomes a primary driver of business, industries are ...

Read more...