Editor's Choice


Sustainable machines for groundworks

Third Quarter 2023 Editor's Choice Electrical switching & drive systems & components

The global drive towards net zero and sustainable energy sources is accelerating the shift from fossil fuel to electric-driven machines. Some European companies are already setting conditions for electric-driven equipment on their tender requirements. Large machines are more complex to convert because of the high power demand. Nevertheless, as electric technology develops, the ground engineering sector is making progress in transitioning the industry to electric power.

Soilmec is a leading ground engineering company with a history of over 50 years in designing, manufacturing and distributing equipment. In line with global trends toward sustainability, Soilmec has embarked on creating a zero local emission line of machines, choosing the microdrilling machine SM-13e as the first in this range. This machine is typically used in soil consolidation work, anchorage, and tunnel construction.

Parker Hannifin supplied several components for the SM-13e, including the GVM210 series motors and GVI-G650 inverters. This project aimed to meet the functional requirements for speed and power, while significantly reducing operating costs and improving performance relative to the diesel-powered machine.

The challenges of electric ground engineering machines

Ground engineering machines work in extreme conditions. Construction sites are exposed to the elements and dusty conditions associated with earthmoving. Additionally, drilling through rocky ground results in strong vibrations. Sensitive electronic components must be designed for these conditions. In the case of the Soilmec SM-13e ETECH machine, the functional requirements created some specific challenges. The SM-13e required four electric motors, each with an inverter. Two of these motors were mounted on top of the mast in the rotary head. The elevation was particularly challenging because cooling systems had to supply the motor at heights up to 10 metres, without interfering with the machine’s operation.

Two motors in the rotary head drove the rotational movement, and the other drove the push-pull movement of the drilling head. The control of the rotary’s motors had to be highly synchronised, making the inverter and motor design and control critical for machine operation. The rotational speed could vary from a high of 130 rpm to a low of 1 rpm. The push-pull motor also had a wide speed range from to 0,08 to 50 m/min.

The electric technology behind the SM-13e

Parker supplied several components for Soilmec’s electrified microdrilling machine, including motors and inverters. The design of the SM-13e utilised the following technologies: GVM210300 motor, GVI-G650 inverter, QDC-050-B hydraulic cooler, and P2075L hydraulic variable piston pump.

The SM-13e solution was designed with maximum flexibility in mind. There were three operating modes: Normal, Eco and Boost. The Normal mode delivered standard operational performance, and the Eco mode allowed for conserving energy when power demands were lower, lengthening battery life. The Boost mode enabled short periods of maximum performance.

A collaborative approach

In developing the Soilmec SM-13e machine, Parker and Soilmec engineers worked together in a collaborative approach. They went through several iterations of refining the requirements, selecting components, and designing a system that worked as an integrated whole. As a result, the first Soilmec SM-13e machine is already delivering excellent results in the field.

The benefits of electric ground engineering machines

Electric machines, like the SM-13e, deliver significant benefits to ground engineering companies. Firstly, they enable users to reduce their carbon footprint substantially. The SM-13e is much more efficient than the diesel equivalent. As the energy source is electrical, the CO2 and other greenhouse gas (GHG) emissions are vastly reduced. At the same time, electric machines are much quieter than internal combustion engines. In contrast to endothermic machines, electric motors are off when the utilities are active but the machine is not drilling. This drastically reduces both the noise to which the operator is subjected, and the energy consumption of the machine.

Secondly, improved efficiency also reduces running costs. Diesel engines tend to run on a time-based service interval. This interval is calculated based on the running time of the machine, including idle time. On the other hand, motors on electric machines can be individually monitored for running time. Thus, maintenance intervals can be significantly extended, resulting in operating costs as much as 56% lower. Additionally, the machine is more available due to reduced downtime, and jobs can progress quicker. Maintenance costs are also reduced because there are fewer maintenance tasks required on an electric motor than on a diesel engine. Lastly, electric machines offer higher performance than their diesel equivalents. This benefit is due to the constant torque availability from electric motors, regardless of speed.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A technological leap with the proportional valve terminal
Festo South Africa Editor's Choice
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Hydraulic systems & components
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Driving fluid power forward
Editor's Choice
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Electrical switching & drive systems & components
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...
Parker Hannifin brings advanced motion technologies to the World RX
Parker Hannifin - Sales Company South Africa News & events
Parker Hannifin is back on the FIA World Rallycross Championship grid to push the limits of sustainable performance in one of motorsport’s toughest arenas.

Read more...
The critical role of check valves
Parker Hannifin - Sales Company South Africa Shaft power components
In fluid power systems, the performance and reliability of the entire operation often hinge on components that are small in size but significant in function. Among these, the check valve stands out as a fundamental yet frequently overlooked element.

Read more...
Reinventing the wheel
Editor's Choice Electrical switching & drive systems & components
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Redefining motion control with Festo’s vision for seamless and intelligent automation
Festo Editor's Choice Electrical switching & drive systems & components
The quest for precision, flexibility and efficiency continues to shape the future of industrial automation, and Festo, as a long-standing leader in automation technology, stands firmly at the forefront of this movement, driving innovation and setting the benchmark for excellence.

Read more...
The opportunity and impact of MEPS electric motor regulations
WEG Africa Editor's Choice Electrical switching & drive systems & components
South African companies are gearing up for the new Minimum Energy Performance Standards, part of a global trend towards energy-efficient electric motors.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved