Editor's Choice


Pneumatic robotics meets artificial intelligence

2nd Quarter 2019 Editor's Choice Robotics & Mechatronics

Whether its grabbing, holding or turning, touching, typing or pressing – in everyday life, we use our hands as a matter of course for the most diverse tasks. In that regard, the human hand, with its unique combination of power, dexterity and fine motor skills, is a true miracle tool of nature. What could be more natural than equipping robots in collaborative workspaces with a gripper that is modelled after this model of nature, that solves various tasks by learning through artificial intelligence? Festo’s pneumatic robot hand BionicSoftHand, combined with the BionicSoftArm, a pneumatic lightweight robot, shows that future concepts are suitable for human-robot collaboration.

The BionicSoftHand is pneumatically operated so that it can interact safely and directly with people. Unlike the human hand, the BionicSoftHand has no bones. Its fingers consist of flexible bellows structures with air chambers. The bellows are enclosed in the fingers by a special 3D textile coat knitted from both, elastic and high-strength threads. With the help of the textile, it is possible to determine exactly where the structure expands and generates power, and where it is prevented from expanding. This makes it light, flexible, adaptable and sensitive, yet capable of exerting strong forces.

Artificial intelligence

The learning methods of machines are comparable to those of humans. Either in a positive or a negative way they require a feedback following their actions in order to classify and learn from them. BionicSoftHand uses the method of reinforcement learning. This means that instead of imitating a specific action, the hand is merely given a goal. It uses the trial and error method to achieve its goal. Based on received feedback, it gradually optimises its actions until the task is finally solved successfully.

Specifically, the BionicSoftHand should rotate a 12-sided cube so that a previously defined side points upwards at the end. The necessary movement strategy is taught in a virtual environment with the aid of a digital twin, which is created with the help of data from a depth-sensing camera via computer vision and the algorithms of artificial intelligence.

Proportional piezo valves for precise control

In order to keep the effort of tubing the BionicSoftHand as low as possible, the developers have specially designed a small, digitally controlled valve terminal, which is mounted directly on the hand. This means that the tubes for controlling the gripper fingers do not have to be pulled through the entire robot arm. The BionicSoftHand can be quickly and easily connected and operated with only one tube each for supply air and exhaust air. With the proportional piezo valves used, the movements of the fingers can be precisely controlled.

BionicSoftArm: One robot arm, many possible variations

The strict separation between the manual work of the factory worker and the automated actions of the robot is being increasingly set aside. Their work ranges are overlapping and merging into a collaborative working space. In this way, human and machine will be able to work together simultaneously on the same workpiece or component in the future, without having to be shielded from each other for safety reasons.

The BionicSoftArm is a compact further development of Festo’s BionicMotionRobot, whose range of applications has been significantly expanded. This is made possible by its modular design. It can be combined with up to seven pneumatic bellows segments and rotary drives. This guarantees maximum flexibility in terms of reach and mobility, thus enables it to work around obstacles even in the tightest of spaces if necessary. At the same time, it is completely flexible and can work safely with people. Direct human-robot collaboration is possible with the BionicSoftArm, as well as its use in classic SCARA applications, such as pick-and-place tasks.

Flexible application possibilities

The modular robot arm can be used for a wide variety of applications, depending on the design and mounted gripper. Thanks to its flexible kinematics, the BionicSoftArm can interact directly and safely with humans. At the same time, the kinematics make it easier for it to adapt to different tasks at various locations in production environments. The elimination of costly safety devices such as cages and light barriers shortens conversion times and thus enables flexible use, completely in accordance with adaptive and economical production.

For more information contact Kershia Beharie, Festo, +27 11 971 5509, kershia.beharie@festo.com, www.festo.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A technological leap with the proportional valve terminal
Festo South Africa Editor's Choice
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Hydraulic systems & components
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Driving fluid power forward
Editor's Choice
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Electrical switching & drive systems & components
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...
Reinventing the wheel
Editor's Choice Electrical switching & drive systems & components
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Redefining motion control with Festo’s vision for seamless and intelligent automation
Festo Editor's Choice Electrical switching & drive systems & components
The quest for precision, flexibility and efficiency continues to shape the future of industrial automation, and Festo, as a long-standing leader in automation technology, stands firmly at the forefront of this movement, driving innovation and setting the benchmark for excellence.

Read more...
The opportunity and impact of MEPS electric motor regulations
WEG Africa Editor's Choice Electrical switching & drive systems & components
South African companies are gearing up for the new Minimum Energy Performance Standards, part of a global trend towards energy-efficient electric motors.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Electrical switching & drive systems & components
[Sponsored]Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved