Editor's Choice


Underwater robot with a unique fin

Third Quarter 2019 Editor's Choice Robotics & Mechatronics

Nature impressively teaches us what the ideal propulsion systems for certain types of movement in water looks like. The BionicFinWave was inspired by the undulating fin movements executed by marine animals such as the polyclad or the cuttlefish. With this form of propulsion, the underwater robot manoeuvres itself autonomously through a system of acrylic glass tubing. This project provides impulses for future work with autonomous robots in the process industry.

With this technology carrier, Festo is once more creating impulses for future work with autonomous robots and new drive technologies for use in fluid media. Concepts like the BionicFinWave could possibly be further developed for tasks such as inspection, measurements or data acquisition, for example for water and wastewater technology or other areas of the process industry. The knowledge gained in this project could also be used for methods in the manufacturing of soft robotics components.

Swimming like the natural model

The longitudinal fins of the polyclad and the cuttlefish extend from the head to the tail along their backs, their undersides or the two sides of their torsos. To move through the water, the animals use their fins to generate a continuous wave that progresses along the entire length of their bodies. This so-called undulation forces the water backwards, thereby producing a forward thrust. The BionicFinWave also uses this principle to manoeuvre itself forward or backwards.

This has enabled Festo to technically realise a fin drive unit that is particularly suitable for slow, precise motion and causes less turbulence in the water than a conventional screw propulsion drive, for example. While it moves through the tube system, the autonomous underwater robot can communicate with the outside world via radio and transmit data such as temperature and pressure sensor readings to a tablet.

Flexible silicone fins as integral components

The two lateral fins of the 370 mm long BionicFinWave are moulded entirely from silicone and dispense with reinforcement struts and other supporting elements. They are therefore extremely flexible and can realistically emulate the gently flowing movements of their biological model. To carry out the movement, each of the two fins is attached to nine small lever arms with a deflection angle of 45 degrees. These are driven by two servo motors housed within the body of the underwater robot. Two flat crankshafts transmit the forces to the arms so that the two fins can move independently of each other. By this means, they can simultaneously generate different wave patterns. To swim in a curve, for example, the outer fin moves faster than the inner one – as with the treads of an excavator.

The BionicFinWave moves upwards or downwards by bending its body in the desired direction. To make the crankshafts suitably flexible, universal joints are located between the lever segments. The crankshafts, together with the joints and piston rod, are made from plastic as integral components in a 3D printing process.

An optimally designed body with integrated onboard electronics

The remaining body elements of the BionicFinWave, which weighs only 430 g, are also 3D-printed. This enables the complex geometry to be realised. With their cavities, the body elements function as floats. At the same time, the waterproof cavities offer a safe location for the entire control and regulation technology within a very small space. A pressure sensor and ultrasound sensors constantly register the BionicFinWave’s distance to the walls and its depth in the water, thereby preventing collisions with the tube system. This autonomous and safe navigation required the development of compact, efficient and waterproof or water-resistant components that can be coordinated and regulated by means of appropriate software.

For more information contact Kershia Beharie, Festo, 086 003 3786, kershia.beharie@festo.com, www.festo.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Festo's life science webinar on gas handling opens up new horizons
Third Quarter 2021, Festo , News & events
How piezo technology more efficiently regulates flow rate and pressure.

Read more...
How to embrace the benefits of smart pneumatics
Third Quarter 2021, Emerson Automation Solutions , Editor's Choice, Pneumatic systems & components
Understand how this challenge creates opportunities It is important to consider how insights from data can help end-users react to real-time events or even predict the future. For example, the Emerson ...

Read more...
PC-based control runs the stage machinery for Rigoletto
Third Quarter 2021, Beckhoff Automation , Editor's Choice, Electrical switching & drive systems & components
In the production, the court jester Rigoletto becomes a clown. Only the head, encircled by a wide collar, and the hands of the gigantic clown protrude from the lake. Eventually the clown becomes the victim ...

Read more...
Robotics and the potential for the lights-out factory
Third Quarter 2021, Omron Electronics , Editor's Choice, Other technologies
However the 100% automated, fully lights-out factory is not a realistic goal for a large proportion of manufacturing businesses currently operating. A key reason is that manufacturing needs people. Human ...

Read more...
Energy from the power of the moon
Third Quarter 2021, SKF South Africa , Editor's Choice, Shaft power components
It is intended to help reduce climate-damaging CO2 emissions, slow down global warming and thus build a more sustainable future for generations to come. With the help of modern technology from SKF, ...

Read more...
Electric motors without magnets
Third Quarter 2021 , Editor's Choice, Electrical switching & drive systems & components
Permanent magnets, though, come with their own baggage. 97% of the world’s rare earth metal supply comes out of China and state control over such a crucial resource across a number of high-tech industries ...

Read more...
Festo perfectly integrated Electric Automation solutions for a complete drive system
Third Quarter 2021, Festo , Electrical switching & drive systems & components
The servo drive CMMT-AS/ST and servo motor EMMT-AS are some of the products that Festo recently featured in their ‘heart of absolute automation’ campaign. Their campaign aims to enhance machine performance. ...

Read more...
A very smart material
Second Quarter 2021 , Editor's Choice, Electrical switching & drive systems & components
Shape memory materials (SMMs) are strong, lightweight materials that have the ability to recover their original shape after being deformed if a stimulus is applied. They can be programmed to remember ...

Read more...
The benefits of collaborative robots
Second Quarter 2021, SMC Corporation South Africa , Editor's Choice, Robotics & Mechatronics
While robotics led the way for the rapid growth of automation, cobots are the democratisation of robotics technology. They eliminate the cost and complex programming that robots usually require while providing much greater flexibility.

Read more...
Fast, safe transport on the factory floor
Second Quarter 2021, Omron Electronics , Editor's Choice
The Philips site in Klagenfurt produces over 23 million linear cutting elements for hair and beard trimmers each year. These beard trimmers use lift-and-trim technology: the beard hair is first lifted ...

Read more...