Editor's Choice


On the way towards fully electrified mining machines

Fourth Quarter 2019 Editor's Choice Electrical switching & drive systems & components

There is virtually no room for error when it comes to mining construction machines. Used almost exclusively underground, often in small, restricted areas, the machines and their exhaust emissions directly impact construction workers. Any solution employed to reduce emissions requires as little human intervention as possible due to the harsh conditions and poor accessibility.

The more time humans spend working in mining conditions, and near mining vehicles, the more likely they are to be injured, contract illnesses or die in accidents. According to the UN’s International Labour Organization, the mining industry employs 1% of the world’s workforce but is responsible for 8% of fatal accidents in the workplace. A study published by Occupational and Environmental Medicine found that diesel emissions can cause fatal lung cancer at a rate up to 38 times what is accepted as the normal occupational risk.

With this in mind, construction machine builders are actively searching for solutions to reduce emissions immediately, with the greater goal of automating their machines so that humans are entirely removed from the process. Not only will this save lives, but it will greatly reduce the cost of the average underground mining worksite.

Mining machines are heading in a new direction. The aim of the industry is to construct new fleets of fully electrified machines. The focus will be to increase total machine efficiency by reducing energy losses in all hydraulic subsystems, including the drive line. By doing this, it will allow the machines to increase performance with less power, extending duty cycles and the time spent on the job between charges. By moving in this direction, companies can optimise four specific areas of their mining operations.

A fully electrified fleet means that fewer operators will be needed, which means lower ventilation costs and lower risk to human life. Mining machines will not cost as much to maintain and the cost of fuelling them would drop dramatically, resulting in lower operational costs. There will be a safer working environment with higher equipment utilisation.

To pave the way for these new fleets, energy losses from diesel powered machines will need to be reduced. To cut the losses down, existing hydraulic parts will need to be replaced by more efficient ones. The result will be a fully electrified fleet providing greater efficiency levels at a reduced cost. With a fully electrified fleet, estimated energy savings of up to 50% can be made on ventilation versus diesel-driven machines.

As mining machines become fully automated, they will also become fully electrical. The ability to control them from the surface will require a combination of cameras and sensors that will take the place of the human operator. Until now, human operators have used their senses, knowledge and experience of the type of work being done. Sensors will make the process much more efficient and will include a range of cameras, speed sensors, angle sensors, pressure sensors and position sensors.

These machines will require fully electrical steer- and brake-by-wire solutions, allowing manufacturers to make them lighter, safer and more compact by removing as many mechanical components as possible. There are several industries already using this approach.

Parker Hannifin offers solutions to mobile construction machine builders and mining companies that work to decrease human involvement. Offering a safe working environment as well as higher equipment utilisation and lower operational costs, mining technology and smart machines represent the future of the industry. Parker Hannifin’s vehicle electrification technologies include vehicle traction systems, auxiliary systems and hydraulic implements.

In vehicle systems, power density is a key design factor. The torque density and speed capabilities of Parker‘s GVM internal permanent magnet AC (PMAC) motors, combined with voltage-matched GVI inverters, provide the speed and torque required to achieve breakthrough performance in a variety of vehicle platforms, including construction platforms, to advance vehicle traction systems available to design engineers. Parker can assist in the development process of electrified machines with baseline testing and energy mapping for optimised sizing of components and systems across a range of battery voltages and control systems.

In the case of hydraulic implements, through the combination of electric motor-inverter systems with hydraulic pumps, in addition to an onboard battery system, the user is able to achieve significant fuel savings, with the ability to operate equipment with the internal combustion engine off, and to capture energy from the vehicle.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A technological leap with the proportional valve terminal
Festo South Africa Editor's Choice
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Hydraulic systems & components
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Driving fluid power forward
Editor's Choice
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Electrical switching & drive systems & components
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...
Parker Hannifin brings advanced motion technologies to the World RX
Parker Hannifin - Sales Company South Africa News & events
Parker Hannifin is back on the FIA World Rallycross Championship grid to push the limits of sustainable performance in one of motorsport’s toughest arenas.

Read more...
The critical role of check valves
Parker Hannifin - Sales Company South Africa Shaft power components
In fluid power systems, the performance and reliability of the entire operation often hinge on components that are small in size but significant in function. Among these, the check valve stands out as a fundamental yet frequently overlooked element.

Read more...
Reinventing the wheel
Editor's Choice Electrical switching & drive systems & components
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Redefining motion control with Festo’s vision for seamless and intelligent automation
Festo Editor's Choice Electrical switching & drive systems & components
The quest for precision, flexibility and efficiency continues to shape the future of industrial automation, and Festo, as a long-standing leader in automation technology, stands firmly at the forefront of this movement, driving innovation and setting the benchmark for excellence.

Read more...
The opportunity and impact of MEPS electric motor regulations
WEG Africa Editor's Choice Electrical switching & drive systems & components
South African companies are gearing up for the new Minimum Energy Performance Standards, part of a global trend towards energy-efficient electric motors.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved