Robotics & Mechatronics


Robotic snake-arm for tight spaces

1 January 2013 Robotics & Mechatronics

Very confined and hazardous spaces are common in many industrial sectors. They are not only difficult for humans to access, but often have to be inspected frequently. Problems occur frequently, and whilst these spaces are difficult for humans to work in, a robot as agile as a snake can explore almost any hidden nook and cranny. OC Robotics in the UK manufactures snake-like robots that are especially suitable for confined spaces and hazardous environments. The snake-arm robots have a slim, flexible design and they can easily fit through small gaps and circumnavigate obstacles with great skill, recording video as they go.

Snake-arm robots have been used in aerospace assembly, in the nuclear energy sector, in medical technology and in security applications; and maxon motors are responsible for the high-precision movements of the multiple degree of freedom robotic snake-arm.

Each snake-arm is customised specifically for the respective application. Furthermore, the head can be equipped with various tools. OC Robotics offers tools for visual inspection with appropriate lighting and cameras, special gripper jaws or lasers for cutting metal and concrete. Depending on the application, the snake-arm robot can be mounted on a stationary or mobile station such as an industrial robot or a gantry.

The snake-arm is capable of performing a whole range of inspection and maintenance tasks without any direct support from its environment. It can be navigated freely across open spaces. The robot is controlled by means of proprietary software which enables the operator to control the snake-arm by means of the ‘nose-following’ principle. A command is transmitted to the tip of the snake-arm by means of a joypad and the rest of the joints follow this specified path. In other words if the operator steers the tip clear of an obstacle, the rest of the snake-arm will follow suit. “With this technology, it becomes a lot easier for people to work in hazardous environments, yet humans are not eliminated completely,” explains Rob Buckingham, managing director of OC Robotics.

In a human arm, the tendons connect the muscles to the bones of the joints. Similarly, in the snake-arm robot, stainless-steel wires are connected to the individual joints of the robot-like tendons. Each individual wire inside the snake-arm is connected to a maxon motor. The snake-like wriggling movements are the result of the motors transmitting the mechanical power to the snake arm, where the individual joints of the arm are located. Depending on the version, up to 50 maxon motors are installed in each snake-arm. These are not located directly in the arm, but in an actuator pack in the base of the robot. This is advantageous as the electronics are more easily accessible and not exposed to the confined and hazardous environments. Another area of use for the motors is in the tools in the snake-arm's head, where one or two maxon motors are typically responsible for the movements of the gripper jaws or swage tool.

The biggest challenge for the drives is to provide a high enough power output inside a compact design. The brushless maxon EC-max 30 DC motor (60 W) and the ceramic version of the GP32 planetary gearhead are used for this highly complex application. Thanks to the brushless design, the electronically commutated DC motors are well suited to long operating times. The heart of the maxon motor design is the ironless winding – with inherent benefits being zero cogging torque, high efficiency and excellent control dynamics.

Special modifications were necessary for the motors used in the snake-arm robot. A special cable and fastening holes were required, while the maxon motor planetary gearhead was modified for the application and a special housing was developed for the brake.

For OC Robotics, reliable motors, good customer support, high quality and high power density were the decisive criteria for choosing maxon motor.

For more information contact Hans Burri, DNH Tradeserve, +27 (0)11 468 2722, [email protected], www.dnhtrade.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Caster for service robot applications
Robotics & Mechatronics
As part of a drive to get robots into more workplaces, operating side by side with humans, a team of expert development engineers at NSK has come up with a novel way to improve the mobility of cobots.

Read more...
Future-proofing SMEs with cobots
Omron Electronics Robotics & Mechatronics
Many countries around the world are likely to experience skill shortages over the coming decade, especially technical specialists. At the same time, product lifecycles are becoming shorter. Collaborative robots are easy to set up, and offer a quick and cost-effective solution.

Read more...
Automating screw assembly using AI
Robotics & Mechatronics
Screw assembly is a key process in all production industries. In essence, it creates a secure connection between two or more parts, using one or more screws. What sounds simple is, in practice, extremely complex.

Read more...
Connecting robot accessories to any industrial or factory network
Robotics & Mechatronics
Robots need accessories to work efficiently. But what’s the easiest way to connect the accessories to factory networks? The easiest way is to use HMS Networks’ ready-made Anybus products, as RSP discovered.

Read more...
An innovative cobot
DNH Technologies Robotics & Mechatronics
The Franka Emika Production 3 is a highly innovative collaborative robot that is playing a key role in shaping the future of smart factories.

Read more...
How Danone SA pulled off its new automated palletising system
Yaskawa Southern Africa Editor's Choice Robotics & Mechatronics
When Yaskawa Southern Africa was contacted about Danone’s new automation project in Boksburg, the industrial robotics manufacturer teamed up with one of its preferred suppliers, Tectra Automation to offer a turnkey solution.

Read more...
Robot breaks world record
Editor's Choice Robotics & Mechatronics
An untethered robot invented at the Oregon State University (OSU) College of Engineering and manufactured by OSU spinout company, Agility Robotics, has established a Guinness World Record for the fastest ...

Read more...
Automated palletising system
Robotics & Mechatronics
Danone Boksburg sought a solution that would automate its manually operated palletising process. Tectra Automation was awarded the contract, and successfully designed, supplied, installed and commissioned ...

Read more...
First sanitisation robots in South Africa
Omron Electronics Robotics & Mechatronics
Patient and healthcare worker safety in South African hospitals is set to reach a new level of excellence with the launch of the revolutionary HERO21 robotic sanitisation system.

Read more...
How Toyota SA navigated severe flooding
Robotics & Mechatronics
On 18 April 2022, President Cyril Ramaphosa declared a national state of disaster when heavy rainfall led to severe flooding and landslides in KwaZulu-Natal, causing the death of 448 people and destroying ...

Read more...