Shaft power components


Coupling considerations for designers

Third Quarter 2022 Shaft power components

For designers, spending time selecting the perfect coupling may be low on the priority list. However, ensuring an efficient and reliable connection between two shafts is paramount for system reliability and to avoid any costly redesigns. Huco, a leading brand of Altra Industrial Motion, offers a comprehensive range of standard and customised couplings designed for most applications.

David Lockett, managing director at Huco, explores the considerations for designers when specifying couplings.

The right time to think about couplings

While sometimes overlooked compared to motors, gearboxes and clutches, specifying a suitable coupling solution can have a major impact on the overall performance of the powertrain. Once the main elements of the powertrain have been specified, it is important to review coupling options to see how the relative performance of different styles may complement your overall design.

When development schedules are tight, designers may be tempted to specify the most easily available coupling type. This may be a false economy as the wrong coupling could lead to problems including premature wear of components, poor efficiency, vibrations, or inadequate torque to turn the shaft and coupling. In any case, this necessitates a costly and time-consuming redesign process.

Accommodating misalignment

Misalignment is the variance between the ideal and actual position and attitude of the two shafts. Depending on the situation, couplings may have to accommodate angular, axial and radial misalignment. Misalignment is often caused by manufacturing tolerances, but in application can be further affected by thermal imbalances, wear, settlement and creep.

The optimal method to gauge misalignment between two shafts is to measure the system when it is at operating temperature and when cold. Assessing the tolerances of other individual elements of the powertrain is also instructive. Failure to accommodate misalignment can increase the wear of associated components such as motor bearings, and shorten coupling service life.

Typically, as misalignment increases, the torque capacity and service life of the coupling will decrease. Accommodating higher levels of misalignment generally requires a longer coupling. For example, a Bellows coupling with an increased number of bellows will accommodate higher degrees of angular misalignment. Radial misalignment can dramatically influence the length of a coupling, as it must bridge two angles to join the shafts. However, certain coupling designs can break these rules. Huco Oldham and UniLat couplings offer designers the opportunity to accommodate large amounts of misalignment within a compact space. Generally, introducing increased coupling flexibility to accommodate misalignment reduces the accuracy of positioning. The key for design engineers is to strike a balance between these two factors based on the demands of the application.

Understanding torque

To improve the torque rating of a coupling, generally it will need to increase in size. Of course, materials and design also have an influence. A stainless steel Bellows coupling, size-for-size, will offer increased torque capacity compared to an Oldham coupling. This is because the Oldham design features an internal plastic disc that limits its torque capacity.

Another consideration is how torque is being applied in the powertrain. The catalogue torque rating of a coupling is based on its performance operating at a constant speed in a single direction. However, if you introduce acceleration, deceleration or changes in rotational direction into the application you reduce the torque capacity of the coupling. For example, a coupling with 10 Nm torque rating will drop down to 3 or 4 Nm with acceleration or deceleration in alternating directions. In such applications – such as robotics or pick-and-place machines – a larger size of coupling is needed.

Torsional stiffness

This is the measure of resistance to torsional rotation in a coupling. High torsional stiffness is important for applications where a high signal integrity or positional accuracy is required. Conversely, reduced torsional stiffness plays an important role when accommodating increased misalignment or when torsional damping against shock loads is desirable.

Once again, designers must consider their application’s needs and compromise between accuracy and accommodating misalignment. A Bellows coupling offers high torsional stiffness, making it ideal for precision applications, but limited at accommodating misalignment. However, a plastic double loop coupling with a plastic element swaged between two hubs offers high misalignment capabilities but low torsional stiffness, unsuited to precise operations.

Torsional stiffness is not as important for couplings with frictional loads (pumps, shutter doors and machinery are good examples), as synchronisation of the shafts is not an issue. However with inertial loads, torsional stiffness is important as it stops what is being driven from lagging behind. The coupling can act as a spring if it is not torsionally stiff under load. This will slightly delay the transfer of motion, which is undesirable for signal integrity or positional accuracy.

For example, inertia between the motor and the driven load is an area of potential instability for a coupling, which can be influenced by torsional stiffness. A coupling placed between the rotor of a motor and the rotor of a pump, both of which are inertial loads, will act like a spring. As the motor starts, it will twist the coupling before motion is transferred, causing lag which will produce instability if the effect is too great. As the inertial load increases, the effect becomes more pronounced.

These instabilities can build upon each other to create resonance, which can greatly reduce the service life of the entire powertrain as vibrations place undue stress on critical components. While impossible to entirely eliminate this phenomenon, by tailoring the torsional stiffness or load of the coupling through different designs, materials and sizes it can be minimised. For engineers, it is worth considering the risk during specification, so that the correct tolerance is designed in.

The design footprint

While it might seem obvious, allowing adequate space for the coupling is vital. Each design will be different, but typically the outside diameter of a coupling will be at least 2 x the shaft diameter. Length is dependent on the type and level of misalignment that must be accommodated. For our Oldham coupling design, the length will typically be 3 x the shaft diameter. Of course, the size of the coupling will also be influenced by the peak torque capacity required. For example, joining 3 mm shafts and allowing 0,5° of angular misalignment needs a coupling that is about 12,7 mm long.

Partnering with an expert

While it may be tempting to assume that joining two shafts will be simple, this is not always the case. Huco has been designing and manufacturing high performance couplings for over 60 years for industries such as food processing, energy, textiles, medical, packaging, metals, machine tools and material handling. While offering a comprehensive range of standardised couplings, Huco also delivers a complete customisation service to support design engineers with a plethora of options to meet the demands of specific applications. Huco can modify existing designs or produce entirely new ones. Furthermore, the ability to rapidly produce working 3D printed examples to test ensures reduced development times. This extensive capability means that Huco can solve almost any dimensional and performance challenge, regardless of which design consideration is most important to your application.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

NSK bearings help pet food plant raise OEE
Shaft power components
When a major UK pet food producer wanted better machine utilisation with the aim of raising its overall equipment effectiveness (OEE) by three points, it decided to ask experts at bearing specialist NSK if they could evaluate processes and systems to help with this improvement goal.

Read more...
Anti-surge valves
Valve & Automation Shaft power components
Anti-surge valves meet the most stringent requirements, and in the event of a disturbance must open lightning fast, with precise positioning and absolute reliability. One of the world’s leading compressor manufacturers selected Arca anti-surge valves for its compressor stations at a steel mill in Taiwan.

Read more...
SKF’s successful raid action in Cape Town
SKF South Africa Editor's Choice Shaft power components
Authorities, with collaborative support from SKF, recently conducted a large and highly effective raid on a very well-known bearing seller of SKF bearings in Cape Town.

Read more...
SKF and Bearings 2000 contribute to the circular economy
SKF South Africa Shaft power components
Throughout 2023, SKF Authorised Distributor, Bearings 2000 has supported SKF’s Remanufacturing Services with a strong focus on remanufacturing spherical roller bearings used in food and beverage applications, and also larger sized spherical roller bearings and deep groove ball bearings for the pulp and paper industry.

Read more...
Tsubaki sealed chains for harsh environments
Shaft power components
BMG’s extensive range of Tsubaki high-performance chains comprises engineering-class SJ3 sealed joint chains with improved sealing technology, designed to improve the reliability of many mechanical components exposed to harsh environments.

Read more...
Bearing technologies for agriculture
Shaft power components
With its innovative bearing solutions. NSK is addressing a trio of hot topics impacting the agriculture sector: sustainable tillage, chemical-free weed control, and the use of robotics.

Read more...
User friendly alignment tool for belt and chain drives
Shaft power components
The accurate alignment of belt and chain drives can make a considerable contribution to a plant’s overall production levels, and subsequent profitability. SKF’s TKBA series of belt alignment tools can align pulleys and sprockets accurately, and allow for corrections for various types of misalignment.

Read more...
Rocket science by ARCA
Shaft power components
Control valves from ARCA, a specialist in industrial process control, are playing a key role in the European Space Agency’s generation 6 ARIANE rocket launchers at its launch pad located near Kourou in French Guiana. They also feature in the SpaceX launch site, Starbase in South Texas.

Read more...
Lubricators sustain five years without breakdown
Shaft power components
After a food manufacturing plant suffered frequent breakdowns of its electrical motors, Lubrication Engineers (LE) recommended the use of automated single-point lubricators. Five years later the client ...

Read more...
Wind turbines with smart sensors
Instrotech Shaft power components
The wind’s usable kinetic energy increases with the wind speed. Wind turbines, therefore, use kinetic energy to generate torque and then rotational movement. The rotor, consisting of three rotor blades, ...

Read more...