Other technologies


Monitoring vibration allows for equipment longevity

Second Quarter 2025 Other technologies

Unscheduled downtime and maintenance on machines is often a source of frustration for many companies active in industrial manufacturing as it results in loss of process and productivity, which in turn equates to loss of revenue.


Neels van der Walt, head of Department Sales and Business Development, Iritron.

While most machinery vibrates, the presence of excess vibration in equipment can lead to these machines malfunctioning or failing, as vibration can cause premature wear of components, shortening the lifespan of equipment and resulting in safety issues. An imbalance or misalignment of machinery may also cause components to crack or break.

An online vibration monitoring system is one of the most effective ways to maintain machine health, predict potential issues and give early warnings of machine failure, translating into numerous operational advantages. By continuously assessing the health of machinery, organisations can implement online condition monitoring maintenance strategies, therefore reducing downtime and extending equipment life.

Advancing with smart online IO-Link vibration monitoring sensors

Using smart vibration monitoring sensors, companies can leverage time domain vibration monitoring to measure and monitor parameters, such as vibration velocity and acceleration, to provide an overview of overall machine health.

These smart sensors can be used to measure and trend vibration against the ISO 10816 standards, which provide vibration guidelines for vibration velocity in mm/s for different classes of industrial machines. Vibration in the time domain represents the overall vibration of the machine and what operators feel when they put their hands on a machine. It is the combination of all components of vibration.

Smart IO-Link vibration sensors are available that offer multiple measurements, including vibration velocity, acceleration, crest factor and temperature, all within a single device. These metrics are measured to provide insights into machine performance, while the sensors are adept at identifying faults like misalignment, unbalance, looseness, bearing failure, cavitation and gear damage.

Measurements of vibration in the time domain that monitor both low- and high-frequency vibration are essential for this type of vibration monitoring. Low frequency vibration in the range of 10 to 1000 Hz can result from defects such as unbalance, misalignment, looseness and more, and is normally measured as velocity. Frequencies of more than 1 kHz are an indication of vibration related to natural frequencies, and are measured as acceleration resulting from defects such as gear faults, bearing failure or cavitation. The crest factor is the peak acceleration divided by the average acceleration and is a quick indication of the impact that is occurring.

Companies further benefit from smart IO-Link sensors that enable compatibility with multiple communication protocols such as Modbus TCP, Profinet and EtherCAT among others. These sensors can easily be integrated into existing control and automation systems. This plug-and-play configuration simplifies installation and accelerates deployment.

Advanced vibration monitoring in the frequency domain

For companies seeking even deeper insight into machine performance, the advanced vibration monitoring solution is the go-to option, combining time and frequency domain analysis. This dual approach allows for enhanced fault detection capabilities. The advanced 3-axis vibration sensor exemplifies this advanced monitoring capability, offering detailed diagnostics across three axes paired with special diagnostic modules for comprehensive system analysis. Collecting data across the three axes provides a holistic view of machine health.

Fast Fourier Transformation of time domain vibration data into the frequency domain enables detailed frequency analysis capable of identify specific issues, and this is used to break up the overall vibration signal into its individual frequency components. This type of vibration analysis can be used to monitor specific bearing faults such as outer race, rolling element or inner race damage, by configuring the specific bearing number in the diagnostic module.

Implementing preventative steps to ensure that your machinery and equipment works optimally and lasts longer is essential to achieving operational success. With tools such as vibration monitoring systems, operations are able to measure any irregularities and have the advantage of early warning of potential failures.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Building resilience in extreme environments
Other technologies
The petrochemical and oil and gas sectors operate in unforgiving environments. In this high-stakes industry, operational efficiency is vital, and unplanned downtime can have severe consequences. To thrive in this demanding landscape, a proactive and sophisticated approach to maintenance is no longer an option, but a necessity.

Read more...
Extending oil drain intervals
Other technologies
In a recent field study, African Group Lubricants tested the performance of Mobil Delvac Modern MX 15W-40 Super Defense engine oil under rigorous operational conditions. The goal was to extend the oil drain interval while maintaining optimal engine performance and reliability.

Read more...
Electric chain hoist where advanced features are standard
Other technologies
Konecranes has launched the new Konecranes D-Series electric chain hoist, designed to meet the demands of industries that require high-performance lifting equipment.

Read more...
Latest advance in automotive cooling fluids
Other technologies
The automotive industry is undergoing a significant transformation, driven by advancements in vehicle design and increasing demands for enhanced performance and durability. These changes are bringing a marked shift toward formulations that offer improved heat dissipation and robust corrosion resistance.

Read more...
Advancements in wire rope testing
Other technologies
Being able to get instant, real-time and portable detection of wire rope flaws can make a significant difference for operational teams. There have been a number of significant technological advancements and tools entering the market that help wire rope operators detect and resolve problems faster.

Read more...
Complete solutions for the die casting industry
Other technologies
Die casting is a manufacturing process that involves injecting molten metal into a mould to produce complex, high-precision components. FUCHS Lubricants South Africa addresses the evolving demands of the die casting sector through continuous product innovation and development.

Read more...
Regular maintenance of cutting fluids is essential to maintain quality
Other technologies
Regular cleaning and maintenance of cutting fluid systems significantly enhances overall efficiency by extending the life of the cutting fluids, reducing downtime and improving the quality of the end products.

Read more...
Rethinking common approaches to wire rope lubrication
Other technologies
: Wire ropes are hard-working components in many different applications, from mines to lifts, ports, construction sites and drainage systems. Correct lubrication of wire ropes is absolutely critical because wire ropes are more than just cables, they are intricate machines composed of interdependent parts in constant motion.

Read more...
Quantum refrigerator paves way for reliable quantum computers
Other technologies
Quantum computers require extreme cooling to perform reliable calculations. Researchers at Chalmers University of Technology, Sweden, and the University of Maryland, USA, have engineered a new type of refrigerator that can autonomously cool superconducting qubits to record low temperatures, paving the way for more reliable quantum computation.

Read more...
Next-gen battery-driven grease gun
SKF South Africa Other technologies
SKF’s innovative TLGB 21 battery-driven grease gun optimises lubrication efficiency and reduces costs, by seamlessly combining advanced technology with a smart, rugged design.

Read more...