Editor's Choice


Bipedal robot breaks Guinness record

Fourth Quarter 2022 Editor's Choice Robotics & Mechatronics

An untethered robot, invented at the Oregon State University College of Engineering, and produced by OSU spinout company Agility Robotics, has established a Guinness world record for the fastest 100 metres by a bipedal robot. Named Cassie by its inventors, the robot set a time of 24,73 seconds, starting and finishing the sprint from a standing position without falling.

Unlike a human sprinter, Cassie has bird type legs like an ostrich, with knees that bend backwards. The robot does not have a vision system and operates without cameras or external sensors, essentially as if blind. To learn how to sprint, the OSU researchers say the robot’s programming was conducted in a week-long simulation. The simulation compressed a year’s worth of training experiences by computing numerous calculations simultaneously.

The 100 metre dash is Cassie’s second record setting performance. In 2021, the robot completed a 5 km run in just over 53 minutes on a single battery charge, making it the first untethered bipedal robot to use machine learning to control a running gait on outdoor terrain, the researchers say.

Cassie was developed under the direction of OSU robotics professor, Jonathan Hurst, with a 16 month, $1 million grant from the Defense Advanced Research Projects Agency (DARPA). Introduced in 2017, the robot became Agility Robotics’ first commercial robot, and has been used by top universities and robotics labs in the U.S. as a platform for exploring machine learning.

Since Cassie’s introduction in 2017, in collaboration with artificial intelligence professor Alan Fern, OSU students funded by the National Science Foundation and the DARPA Machine Common Sense programme have been exploring machine learning options in Oregon State’s Dynamic Robotics and AI Lab. “We have been building the understanding to achieve this world record over the past several years, running a 5 km stretch and also going up and down stairs,” says graduate student Devin Crowley, who led the Guinness effort. “Machine learning approaches have long been used for pattern recognition, such as image recognition, but generating control behaviours for robots is new and different.”

Fern says that the Dynamic Robotics and AI Lab melds physics with AI approaches more commonly used with data and simulation to generate novel results in robot control. Students and researchers come from a range of backgrounds including mechanical engineering, robotics and computer science.

“Cassie has been a platform for pioneering research in robot learning for locomotion,” Crowley adds. “Completing a 5 km run was about reliability and endurance, which left open the question of how fast Cassie can run. That led the research team to shift its focus to speed.”

Cassie was trained for the equivalent of a full year in a simulation environment, compressed to a week through a computing technique known as parallelisation – multiple processes and calculations happening at the same time − allowing Cassie to go through a range of training experiences simultaneously.

“Cassie can perform a spectrum of different gaits but, as we specialised for speed, we began to wonder which gaits are most efficient at each speed,” Crowley explains. “This led to Cassie’s first optimised running gait and resulted in behaviour that was strikingly similar to human biomechanics.”

The remaining challenge, a “deceptively difficult” one, is to get Cassie to start reliably from a free-standing position, run, and then return to the free-standing position without falling.

“Starting and stopping in a standing position are more difficult than the running part, similar to how taking off and landing are harder than actually flying a plane,” Fern continues. “This 100 metre result was achieved by a deep collaboration between mechanical hardware design and advanced artificial intelligence for the control of that hardware.” Hurst, also chief technology officer at Agility Robotics, calls the Guinness-recognised accomplishment “a big watershed moment”.

“This may be the first bipedal robot to learn to run, but it won’t be the last,” he says. “I believe control approaches like this are going to be a huge part of the future of robotics. The exciting part of this race is the potential. Using learned policies for robot control is a very new field, and this 100 metre dash is showing better performance than other control methods. I think progress is going to accelerate from here.”




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A technological leap with the proportional valve terminal
Festo South Africa Editor's Choice
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Hydraulic systems & components
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Driving fluid power forward
Editor's Choice
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Electrical switching & drive systems & components
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...
Reinventing the wheel
Editor's Choice Electrical switching & drive systems & components
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Redefining motion control with Festo’s vision for seamless and intelligent automation
Festo Editor's Choice Electrical switching & drive systems & components
The quest for precision, flexibility and efficiency continues to shape the future of industrial automation, and Festo, as a long-standing leader in automation technology, stands firmly at the forefront of this movement, driving innovation and setting the benchmark for excellence.

Read more...
The opportunity and impact of MEPS electric motor regulations
WEG Africa Editor's Choice Electrical switching & drive systems & components
South African companies are gearing up for the new Minimum Energy Performance Standards, part of a global trend towards energy-efficient electric motors.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Electrical switching & drive systems & components
[Sponsored]Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved