classic | mobile
 

Search...

 

Pneumatic or electric?
3rd Quarter 2017, Pneumatic systems & components


The requirements for modern production plants are becoming increasingly complex. It is therefore essential that the drive technology used is the best possible solution for the task at hand.

Most linear motions in the field of automation and handling technology are carried out using pneumatic or electric drives. This means that engineers frequently face the challenge of having to find the most appropriate solution for a specific application when planning and designing machines and plants.

Introduction

Machine manufacturers generally have a choice of different pneumatic and electro-mechanical automation solutions when implementing an automation task. However, there is no general advice on when the different technologies are typically used. As a result, the user is frequently faced with the question of which automation technology is best suited, technically and economically, to the individual requirement. In addition, each drive technology also has its own different designs and drive forms that the user needs to consider.

Typical axis technologies for electric drives

Electric actuators come in many different versions. As a rule, the motor’s rotary motion is converted into a linear motion by a mechanical system. There are also electric direct drives (linear motors) that can generate a linear motion without any additional mechanical system. In practice, spindle and toothed belt drives are the most widely used linear drives. Criteria like dynamic response, force, control characteristics, load stiffness and above all economic efficiency always play an important role when making this decision.

Pneumatics: mechanical system and drive in one

Pneumatic drives have no such separation between the mechanical system and drive. The mechanical system of a pneumatic cylinder also executes the drive function. This means that pneumatic drives need much less space, making them very suitable for applications where space plays a central role.

Two or more positions?

Many industrial applications require cyclical travel between two defined points. This is a typical case for using pneumatic drives because of their ability to carry out a simple point-to-point motion with little effort. If more than two or three positions are to be approached, electric drive systems are often used. These systems can approach an almost unlimited number of intermediate positions and can thus also realise more complex motion sequences.

Dynamic response, force or both?

Depending on their design, electric drives can generate both high dynamic responses and high forces. They even outperform their pneumatic counterparts under extreme conditions. This is due to the different mechanical gear ratios; however, this does result in a direct correlation between dynamic response and force. What this means is that high forces, for example, can only be realised at the cost of the dynamic response (and vice versa). Spindle drives, for example, are particularly suitable for high forces at low to medium speeds, while toothed belt drives offer high dynamic response at the cost of maximum force.

When looking at dynamic response and force separately, the performance values of pneumatic drives are not as high as that of electric drives. Their ratio of force to dynamic response, though, is outstanding in many applications and superior to that of electric drives, especially in relation to installation space. That is why pneumatics is very well suited to applications requiring high performance density.

Continuous forces are the domain of pneumatics

Basically, linear motion processes can be divided into two phases: the motion itself and the holding phase at the end of the stroke. The importance of a component within the overall task can also be an indication as to which drive technology would be the most suitable. While pure motion tasks are executed very efficiently by electric drives, the technical operating principle of pneumatic drives makes them perfect for applying continuous forces and maintaining them for any length of time. This makes pneumatics the first choice for high continuous forces or long holding times.

Good control characteristics give the edge to electrics

Electric drives are normally used if an application requires free positioning or special acceleration sequences and speeds. Thanks to their good control characteristics, they can be flexibly adapted to a wide range of requirements. And, unlike standard pneumatics, they can also approach an unlimited number of intermediate positions. Servopneumatics is an interesting alternative if compressed air is to be used for a specific purpose, for example EMC or explosion protection. By having a displacement encoder, a proportional valve and a position controller, servopneumatics, as opposed to standard pneumatics, is a controlled system with which free positioning and detailed motion profiles can be achieved.

Load stiffness or flexibility?

In addition to special motion profiles, an application may also need high load stiffness or a deliberately flexible system. Since electric positioning drives are generally operated in closed-loop mode, they respond immediately to deviations in the required behaviour and make the necessary adjustments. Despite additional external loads, electric drives therefore generally follow their specified trajectory.

Pneumatic drives, on the other hand, can respond flexibly to external influences, even with high continuous forces, and can usually handle even overloading without any damaging effects. This characteristic can also be exploited to absorb shock or impact loads that would impair other drive types beyond repair in the long term.

Electric systems require specialised staff

One of the main differences between pneumatic and electric drive technology is the actual system setup and the associated complexity. Pneumatic systems have a simple setup and are impressively easy to install, commission, operate and maintain.

While electric systems have been state-of-the-art for decades, they are unquestionably more complicated to commission and require specialised staff with a higher level of technical knowledge. This is not only an important consideration for the plant manufacturer, but also for the customer who will have to operate and maintain the plant.

Economic comparison

Last but not least, the economic efficiency of a solution is also of great importance. An analysis of the procurement costs reveals that pneumatic solutions generally require much less investment than electric solutions. In addition, pneumatic systems are, as mentioned previously, quick and easy to set up and commission.

However, the operating costs must also be taken into account alongside the procurement costs. The energy costs in particular often constitute a key part of a system’s total cost-of-ownership.

Electric drives are an energy-efficient option, especially for tasks involving just motion. Their energy consumption is also load dependent. Compressed air, on the other hand, is often perceived as being a relatively expensive form of energy. But very few customers know the absolute energy consumption of their pneumatic actuators.

This means they do not have the criteria they need to decide whether an alternative solution could be more economical. Another challenge is ensuring that pneumatic systems are correctly used and sized, as these factors are also key to their efficient use.

The Energy Efficiency in Production in the Drive and Handling Technology Field (EnEffAH) research project completed in 2012, was a joint project as part of the German Federal Government’s 5th and 6th energy research programme. This provides a simple guide to the efficiency of an electric or pneumatic drive system. It clearly shows that electric drives are very efficient when it comes to large strokes with short holding times, and pneumatics is the preferred option for short strokes combined with holding tasks.

The question about which technology is more economical, therefore, depends on the application. However, basic trends about the efficiency of drives are often also applicable to their economic efficiency. Only a detailed investigation that considers the specific operating conditions can provide a clear and reliable answer to the question as to which technology is best.

Conclusion: it depends on the application

The decision for or against a technology is based on several criteria, only some of which are examined here. Given the clear differences between pneumatics and electrics, it is not possible to make general statements about which technology is best. It is therefore important to focus on the problem and the associated parameters before choosing the most suitable solution. That is the only way to find the best technical and most economical solution.

Read the full article online at http://motioncontrol.co.za/+festo3


Credit(s)
Supplied By: Festo
Tel: 08600 FESTO (33786)
Fax: 08794 FESTO (33786)
Email: sales.za@festo.com
www: www.festo.co.za
Share via email     Print this page  

Further reading:

  • SMC’s new generation valve manifolds
    3rd Quarter 2017, SMC Pneumatics South Africa, Pneumatic systems & components
    Since opening its doors in 2016, SMC has continuously promoted the new generation SY series of valve manifolds.
  • A revolution in automation
    3rd Quarter 2017, Festo, This Week's Editor's Pick, Pneumatic systems & components
    All this is made possible by the latest developments in piezo technology and associated software. Just as the smartphone turned the mobile communication market on its head a decade ago, so too Festo’s ...
  • Engineers of productivity
    3rd Quarter 2017, Festo, News & events
    Festo recently staged an exclusive automation exhibition at UrbanTREE, showcasing the company’s latest automation solutions and innovations. Guests were entertained by top South African comedian, Deep ...
  • Festo Didactic training: September to November 2017
    3rd Quarter 2017, Festo, News & events
    The following courses are available from Festo Didactic:    Pneumatics (1) Basic PN111: Johannesburg: September 6-8, October 4-6 Pretoria: September 27-29 Cape Town: November 8-10 Durban: September ...
  • Three additional communication protocols
    3rd Quarter 2017, SMC Pneumatics South Africa, Pneumatic systems & components
    Responding to the demand for broader communication capacities on its popular direct input step motor controller, SMC Pneumatics has now made it available in three additional communication protocols, DeviceNet, ...
  • Why and how pressure gauges should be calibrated
    3rd Quarter 2017, SA Gauge, Pneumatic systems & components
    Pressure gauge calibration is the comparison of measurement values of a unit with those of a more accurate calibrated reference instrument. This instrument is normally traceable to National Standards ...
  • How to extend your filter element life
    3rd Quarter 2017, Artic Driers International , Pneumatic systems & components
    High quality inline filter casings and the elements they contain, are an essential part of compressed air treatment. They are the primary defence for removing condensed water, particles, oils and vapours ...
  • Valve manifolds with flexible design
    2nd Quarter 2017, SMC Pneumatics South Africa, Pneumatic systems & components
    SMC Pneumatics continues to drive design excellence and application with its SY series of valve manifolds which is manufactured locally at its production facilities in Midrand, Johannesburg.
  • The soul of the ant
    2nd Quarter 2017, Festo, Robotics & Mechatronics
    Drawing inspiration from the delicate anatomy of the ant, Festo has transferred their cooperative behaviour to the world of technology using complex control algorithms.
  • Production of the future
    2nd Quarter 2017, Festo, News & events
    Festo is at the forefront of developments in Industry 4.0 and the company recently held an exclusive business seminar that gave insight into the factory of the future and highlighted the myriad of business ...
  • Festo Didactic training: June to August 2017
    2nd Quarter 2017, Festo, News & events
    The following courses are available from Festo Didactic:       Pneumatics (1) Basic PN111:    Johannesburg: June 7-9, July 5-7    Cape Town: August 16-18    Durban: July 19-21    East London: August 30-September ...
  • New refrigeration dryer range
    2nd Quarter 2017, Tegnon, Pneumatic systems & components
    Tegnon has introduced the new DE ETM refrigeration dryer range from MTA to the South African and African markets. The DE ETM range is the most energy-efficient dryer range available. The innovative design ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    classic | mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.