Editor's Choice


Modern electromechanical ­machine design

3rd Quarter 2018 Editor's Choice Other technologies

Engineers from the older generation will remember the days when machine design had to be based around catalogued electromechanical actuators. Variations from standard were rare, in addition to being expensive. Fast-forward around 40 years and the modern experience is somewhat different. Today’s machine designers not only desire highly configurable and adaptable products, they expect them.

With this in mind, many leading motion technology suppliers have developed their product portfolio specifically for machine designers. Explained below are some key factors that will aid the selection of electromechanical motion products for use in the machines of today.

Stroke capacity

Among the fundamental questions to ask is: does the actuator offer various stroke lengths as standard? A product using a ball or lead-screw drive is commonly restricted to stroke lengths up to around two metres maximum for practicality. There are some actuators offering strokes to four metres, however at lengths such as these, speed is often limited due to screw whip, so the product that achieves a particular speed at one stroke will not usually achieve that speed at a longer stroke length.

Very long stroke lengths can, however, be achieved by belt drives, which perform to a similar level regardless of stroke length, but lack the precision of a screw-driven product.

A further option is linear motor-driven products, which provide performance levels that scale extremely well with increases in stroke. In addition, linear motors do not demonstrate speed restrictions at longer strokes and offer the same repeatability over the full stroke.

Scalability

With regard to scalability, machine builders should determine if the actuator is available in a number of different frame sizes or widths. Having a family of products to select from allows the project to be cost-optimised. Moreover, many multi-axis applications demand different loading for each axis.

Having multiple drive train choices in the same product is often overlooked, but the availability of screw or belt options within a given product can prove extremely useful to a machine designer. In the same form factor, designers can tailor the drive train to specific requirements, be it thrust density normally obtainable from a screw drive, or speed from a belt drive. The ability to bounce between the two without having to rethink the machine’s layout can be highly beneficial.

Modularity and performance

It is a common requirement for electromechanical actuators to be connected to other actuators or mechanical devices. The ability to combine linear actuators into XY, XZ, or XYZ assemblies quickly and effortlessly is vital. As a result, most modern electromechanical products can be bolted together like building blocks, without the use of transition plates for XY systems (plates are often unavoidable for the Z or vertical axes to maintain stability).

A further factor here is performance-to-size ratios, which should be considered carefully. Using a product that is highly condensed leaves more space for machine designers to include end effectors and tooling. For this reason, metrics such as thrust or rated load per height-by-width become important.

Selectable resolutions and encoder types

To retain good servo control, an actuator should have five to ten times more resolution available than the repeatability of motion required. With this in mind, having multiple options is the optimum solution as high resolution encoders can be quite costly.

Being able to adjust the resolution is also important. Some of the latest encoder products can vary their resolution through a relatively simple hardware change. A further approach is to deploy analog feedback devices and compatible servo drives. In using analog feedback signatures (typically 1 V peak-to-peak), two analog signals are passed from the encoder to the drive, 90° out of phase with one another. Equivalent resolution is established within the drive, and is dependent upon the pitch of the linear scale and resolution of the drive’s analog input.

Flexible encoders

As well as flexible resolution, the availability of flexible encoder technologies is another major benefit. Optical encoders with glass scales have been a popular choice for many years, but today there are many alternative technologies that provide competitive resolutions and costs.

For example, in applications that do not require especially high levels of precision, magnetic encoder technology is a cost-effective option, while applications that do require high precision but not long stroke lengths benefit from the very high resolutions of capacitive encoders. Inductive encoders are often popular for applications directly exposed to heavy contamination, such as coolant from a machine tool. Applications which require constant positional information regardless of an axis being homed will require an absolute feedback source.

With regard to communications, until recently, most encoder protocols were based on embedded propriety signals, which meant that designers had to use a limited list of manufacturers. Today, open standard protocols such as the single cable Hiperface DSL solution allow design engineers to use a variety of products and even reduce installation and cabling efforts.

Digital design

In cutting-edge design software, finite element analysis (FEA) can be used to understand not only the deflection characteristics, but also the thermal or magnetic variations within the product. Naturally, these simulations cannot give results with 100% certainty as they are only as good as the algorithms and assumptions that are used, but modern machine design is starting to leverage these digital design methodologies more heavily to expedite development.

Metrology test data

Test data from metrology can be used to take ballscrew backlash into account, and improve overall system accuracy. For applications with very specific requirements, these tests can be performed to mirror the actual application characteristics. Cleanroom applications are a good example as there are many characteristics, such as speed, acceleration, orientation and air flow, which can greatly impact product performance. Selecting products from a design partner that understands the mission-critical aspects of the application and tests will prove particularly advantageous.

Summary

Today, the demand for faster turnaround time on machines has become critical. The same design engineer who might have allowed for a machine to be developed in several months, now expects it in weeks. Key to the machine-building race is selecting the right product from a manufacturer that understands the daily design hurdles and has systems in place that allow for rapid machine development.

Factors such as breadth of product, range of options, modularity and product test data should be taken into account when designing the machines of today. This strategy will enhance the machine builder’s ability to respond to customer needs, and provide faster ROI.

For more information contact Lisa de Beer, Parker Hannifin SA, +27 11 961 0700, [email protected] www.parker.com/za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A technological leap with the proportional valve terminal
Festo South Africa Editor's Choice
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Hydraulic systems & components
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Driving fluid power forward
Editor's Choice
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Electrical switching & drive systems & components
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...
Parker Hannifin brings advanced motion technologies to the World RX
Parker Hannifin - Sales Company South Africa News & events
Parker Hannifin is back on the FIA World Rallycross Championship grid to push the limits of sustainable performance in one of motorsport’s toughest arenas.

Read more...
The critical role of check valves
Parker Hannifin - Sales Company South Africa Shaft power components
In fluid power systems, the performance and reliability of the entire operation often hinge on components that are small in size but significant in function. Among these, the check valve stands out as a fundamental yet frequently overlooked element.

Read more...
Reinventing the wheel
Editor's Choice Electrical switching & drive systems & components
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Redefining motion control with Festo’s vision for seamless and intelligent automation
Festo Editor's Choice Electrical switching & drive systems & components
The quest for precision, flexibility and efficiency continues to shape the future of industrial automation, and Festo, as a long-standing leader in automation technology, stands firmly at the forefront of this movement, driving innovation and setting the benchmark for excellence.

Read more...
The opportunity and impact of MEPS electric motor regulations
WEG Africa Editor's Choice Electrical switching & drive systems & components
South African companies are gearing up for the new Minimum Energy Performance Standards, part of a global trend towards energy-efficient electric motors.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved